Publish in this journal
Journal Information
Vol. 41. Num. 152.October 2006Pages 131-171
More article options
Vol. 41. Num. 152.October 2006Pages 131-171
Coactivation of the biceps femoris limits the maximum isometric force on knee extension in road cyclists
David García-Lópeza, Guilherme Brescianib, Salvador Cabeza de Vacab, Nuria Garatacheac, José A de Pazb
a Facultad de Ciencias de la Salud. Universidad Europea Miguel de Cervantes. Valladolid. España
b Departamento de Fisiología. Universidad de León. León. España.
c Federación Andaluza de Ciclismo. Sevilla. España.
This item has received
Article information
Introduction and objectives: The aim of this study was to analyze antagonist coactivation (biceps femoris) during maximal isometric leg extension in road cyclists, and its relationship with agonist activation (rectus femoris, medial vastus, lateral vastus) and the force developed. Gastrocnemius activation was also monitored. Methods: Sixteen road cyclists carried out a maximum unilateral isometric contraction on a leg-extension machine, using their dominant leg. The test lasted 5 seconds and the isometric force and electromyographic (EMG) activity of 6 lower limb muscles was monitored. Results: Antagonist and gastrocnemius average EMG activity (EMG med) was 37.4% and 18.2% of the agonist EMG med respectively. Analysis of the EMG med of each of the 3 agonist muscles separately showed that the rectus femoris EMG med was significantly higher than the vastus medialis and vastus lateralis EMG med. Biceps femoris EMG med was negatively correlated with maximal isometric force. However, neither agonist nor gastrocnemious activation was related to the force developed. Conclusions: Antagonist coactivation limits the maximum isometric force on knee extension in road cyclists. This finding and excessive rectus femoris activation could be related to biomechanical differences between pedaling ­ the movement practiced by cyclists ­and leg extension on the machine.
Apunts Medicina de l'Esport (English Edition)

Subscribe to our Newsletter

Article options
Cookies policy
To improve our services and products, we use cookies (own or third parties authorized) to show advertising related to client preferences through the analyses of navigation customer behavior. Continuing navigation will be considered as acceptance of this use. You can change the settings or obtain more information by clicking here.